Mossbauer effect of STFe-doped silicon nitride

Silicon nitride has a great potential for hightemperature materials [1]. It has been well known that iron doping into silicon accelerates the nitridation of the material [2, 3]. The purpose of the present study was to clarify the role of iron in silicon nitride structure by means of iron-57 Mössbauer spectroscopy.

Silicon powder (99.999%) and a small amount of Fe₂O₃ (enriched with 94% $57Fe$) were mixed and pressed to pellets. They were put on dummy $Si₃N₄$ pellets to avoid direct contact with an Al_2O_3 boat, and were nitrided at a maximum temperature of 1430° C in a nitrogen gas atmosphere (O₂ < 0.5 ppm, dew point <-60° C). The products were identified with an X-ray diffractometor as α -Si₃N₄ containing a small amount of β -Si₃N₄ and were subsequently studied by Mössbauer spectroscopy.

The Mössbauer equipment (Elscient Co) was used in a constant acceleration mode. The Mössbauer spectra were recorded at room temperature using a source of 57Co in Cu, and the velocity scale was calibrated by an iron foil and sodium nitroprusside.

Fig. 1 shows a typical Mössbauer spectrum of 0.41 at.% Fe-doped silicon nitride. The spectrum is composed of two peaks of an equal intensity. The isomer shift (δ) was +0.277 mm sec⁻¹, indi-

Figure 2 Mössbauer spectrum of 2.61 at. % ⁵⁷ Fe -doped $Si_a N₄$ at room temperature.

cating that the iron atoms were in the $Fe³⁺$ state [4]. The quadrupole splitting (ΔE_{Ω}) was 0.531 mm sec⁻¹; Fe³⁺ is S-state (3d⁵; $6S_{5/2}$) and has no electric field gradient of its own. Thus, this relatively large value of ΔE_{Ω} can come from a highly asymmetrical electrical environment around $Fe³⁺$ ions. A line width was 0.389 mm sec⁻¹, which was larger than that of sodium nitroprusside $(0.248 \text{ mm sec}^{-1})$. Similar spectra were observed in the materials with dopant levels up to 0.63 at. % Fe and their Mössbauer parameters were independent of the Fe content. Above 0.63 at. % Fe, another magnetic hyperfine splitting appeared (Fig. 2). The magnetic hyperfine field and the peak positions agreed with those of metallic iron. A solubility limit of iron into $Si₃N₄$, therefore, would lie around 0.6 at. % at 1430° C.

In order to understand the magnitude of the quadrupole splitting observed, the observed ΔE_{Ω} value was compared with the calculated one. The electric field gradient *(eq), the* asymmetry parameter (η) and the $\Delta E_{\mathbf{Q}}$ can be given by the well-known relations [5]

$$
eq = V_{zz}
$$

\n
$$
\eta = |V_{xx} - V_{yy}|V_{zz}
$$

\n
$$
\Delta E_{\mathbf{Q}} = \frac{1}{2} e^2 q' Q (1 + \frac{1}{3} \eta^2)^{1/2},
$$

where *e* is the anion charge, diagonal elements (V_{jj}) are chosen so that $|V_{xx}|\leqslant |V_{yy}|\leqslant |V_{zz}|, q' =$

Figure 1 Mössbauer spectrum of 0.41 at. % ⁵⁷ Fe -doped $Si_a N₄$ at room temperature.

1754 *9 1976 Chapman and Hall Ltd. Printed in Great Britain.*

	TABLE I Calculations of the				quadrupole splitting for Fe-doped	Si ₂ N ₄	containing	nitrogen	vacancies
Vacant site around $Si(1)$	$q \times 10^{-24}$ cm^{-3})	η	$\Delta E_{\rm Q}$ (mm sec ⁻¹) ionicity		Vacant site around $Si(2)$	$q \times 10^{-24}$ $\rm (cm^{-3})$	η	$\Delta E_{\mathbf{Q}}$ (mm sec ⁻¹) ionicity	
			30%	20%				30%	20%
N(1)	0.378	0.417	0.770	0.513	N(1)	0.420	0.104	0.833	0.555
N(1')	0.324	0.347	0.655	0.436	N(2)	0.416	0.132	0.826	0.551
N(2)	0.422	0.056	0.834	0.557	N(2')	0.347	0.559	0.721	0.481
N(3)	0.378	0.217	0.754	0.534	N(4)	0.369	0.288	0.740	0.493
		av.	0.765	0.502			av.	0.780	0.520

JOURNAL OF MATERIALS SCIENCE 11 (1976).LETTERS

 $(1 - \gamma_{\infty})$ *q*, *Q* is the quadrupole moment of the first exited state of ⁵⁷Fe, and γ_{∞} is the Sternheimer antishielding factor. The generally accepted values of γ_{∞} and Q are -9.14 [6] and 0.20 barn [7], respectively.

The crystal structure of α -Si₃N₄ has been determined by X-ray diffraction, the space group being P31c [8]. There are two types of silicon positions $Si(1)$ and $Si(2)$, each of which is tetrahedrally surrounded by nitrogen atoms. It is assumed that silicon is replaced by iron in both sites, and that the degree of ionicity in $Si₃N₄$ is 30% according to Pauling's formulation [9]. The calculated values of $\Delta E_{\mathbf{Q}}$ were 0.19 mm sec⁻¹ for $Si(1)$ site and 0.12 mm sec⁻¹ for $Si(2)$, when tetrahedron was fully occupied by nitrogen. Both values are much smaller than the observed one, 0.531 mm sec⁻¹. Further calculations were made by introducing a nitrogen vacancy in the tetrahedron, which may result to maintain charge neutrality over the whole volume. The calculated mean $\Delta E_{\mathbf{Q}}$ for the silicon nitride containing the defects were 0.765 mm sec⁻¹ for Si(1) site and 0.780 mm sec⁻¹ for Si(2) site (Table I). These values are in approximate agreement with the observed one. On the other hand, the calculation for 20% ionicity showed $\Delta E_{\mathbf{Q}} = 0.502$ and 0.520 for Si(1) and Si(2) sites, respectively.

It may be concluded, therefore, that the relatively large $\Delta E_{\mathbf{Q}}$ observed in Fe-doped Si₃ N₄ can be explained by the presence of a nitrogen vacancy. This conclusion may also supported by a study of nitrogen self-diffusion for "pure" and Fe-doped silicon nitride [10].

References

- 1. P. POPPER and S. N. RUDDLESDEN, *Trans. Brit. Ceram. Soc.* 60 (1961) 603.
- 2. H. SUZUKI, *Bull. Tokyo Inst. Teeh.* 54 (1958) 163.
- 3. D. R. MESSIER and P. WRONG, J. Amer. Ceram. *Soc.* 56 (1973) 480.
- 4. L. R. WALKER, G. K. WERTHEIM and V. JACCARINO, *Phys. Rev. Letters* 6 (1961) 98.
- 5. G. K. WERTHEIM, "M6ssbauer Effect: Principles and Applications" (Acamemic Press, New York and London, 1965) p. 59.
- 6. R. M. STERNHEIMER, *Phys. Rev.* 130 (t963) 1423.
- 7. H. R. LEIDEN and D. N. PIPKORN, *ibid* 165 (1968) 494.
- 8. K. KATO, S. INOUE, K. KIJIMA, I. KAWADA, H. TANAKA and T. YAMANE, *J. Amer. Ceram. Soc.* 58 (1975) 90.
- 9. L. PAULING, "The Nature of the Chemical Bond" (Cornell University Press, 1960) p. 64.
- 10. K. KIJIMA, H. YAMAMURA, S. SHIRASAKI, Y. INOMATA and H. SUZUKI, to be published.

Received 2 7 February and accepted 28 April 19 76

> H. YAMAMURA K. KIJIMA S, SHIRASAKI Y. INOMATA *National Insitute for Reseaches in Inorganic Materials, Kurakake, Sakura-Mura, Niihari-Gun, Ibaraki, Japan*

> > H. SUZUKI

Reseach Laboratory for Nuclear Reactors, Tokyo Institute of Technology, O-okayama, Meguroku, Tokyo, Japan